3.125 \(\int x^3 (a+i a \sinh (e+f x))^{3/2} \, dx\)

Optimal. Leaf size=377 \[ -\frac{16 a x^2 \sqrt{a+i a \sinh (e+f x)}}{f^2}-\frac{8 a x^2 \cosh ^2\left (\frac{e}{2}+\frac{f x}{2}+\frac{i \pi }{4}\right ) \sqrt{a+i a \sinh (e+f x)}}{3 f^2}-\frac{1280 a \sqrt{a+i a \sinh (e+f x)}}{9 f^4}+\frac{640 a x \tanh \left (\frac{e}{2}+\frac{f x}{2}+\frac{i \pi }{4}\right ) \sqrt{a+i a \sinh (e+f x)}}{9 f^3}-\frac{64 a \cosh ^2\left (\frac{e}{2}+\frac{f x}{2}+\frac{i \pi }{4}\right ) \sqrt{a+i a \sinh (e+f x)}}{27 f^4}+\frac{32 a x \sinh \left (\frac{e}{2}+\frac{f x}{2}+\frac{i \pi }{4}\right ) \cosh \left (\frac{e}{2}+\frac{f x}{2}+\frac{i \pi }{4}\right ) \sqrt{a+i a \sinh (e+f x)}}{9 f^3}+\frac{8 a x^3 \tanh \left (\frac{e}{2}+\frac{f x}{2}+\frac{i \pi }{4}\right ) \sqrt{a+i a \sinh (e+f x)}}{3 f}+\frac{4 a x^3 \sinh \left (\frac{e}{2}+\frac{f x}{2}+\frac{i \pi }{4}\right ) \cosh \left (\frac{e}{2}+\frac{f x}{2}+\frac{i \pi }{4}\right ) \sqrt{a+i a \sinh (e+f x)}}{3 f} \]

[Out]

(-1280*a*Sqrt[a + I*a*Sinh[e + f*x]])/(9*f^4) - (16*a*x^2*Sqrt[a + I*a*Sinh[e + f*x]])/f^2 - (64*a*Cosh[e/2 +
(I/4)*Pi + (f*x)/2]^2*Sqrt[a + I*a*Sinh[e + f*x]])/(27*f^4) - (8*a*x^2*Cosh[e/2 + (I/4)*Pi + (f*x)/2]^2*Sqrt[a
 + I*a*Sinh[e + f*x]])/(3*f^2) + (32*a*x*Cosh[e/2 + (I/4)*Pi + (f*x)/2]*Sinh[e/2 + (I/4)*Pi + (f*x)/2]*Sqrt[a
+ I*a*Sinh[e + f*x]])/(9*f^3) + (4*a*x^3*Cosh[e/2 + (I/4)*Pi + (f*x)/2]*Sinh[e/2 + (I/4)*Pi + (f*x)/2]*Sqrt[a
+ I*a*Sinh[e + f*x]])/(3*f) + (640*a*x*Sqrt[a + I*a*Sinh[e + f*x]]*Tanh[e/2 + (I/4)*Pi + (f*x)/2])/(9*f^3) + (
8*a*x^3*Sqrt[a + I*a*Sinh[e + f*x]]*Tanh[e/2 + (I/4)*Pi + (f*x)/2])/(3*f)

________________________________________________________________________________________

Rubi [A]  time = 0.351429, antiderivative size = 377, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 5, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.238, Rules used = {3319, 3311, 3296, 2638, 3310} \[ -\frac{16 a x^2 \sqrt{a+i a \sinh (e+f x)}}{f^2}-\frac{8 a x^2 \cosh ^2\left (\frac{e}{2}+\frac{f x}{2}+\frac{i \pi }{4}\right ) \sqrt{a+i a \sinh (e+f x)}}{3 f^2}-\frac{1280 a \sqrt{a+i a \sinh (e+f x)}}{9 f^4}+\frac{640 a x \tanh \left (\frac{e}{2}+\frac{f x}{2}+\frac{i \pi }{4}\right ) \sqrt{a+i a \sinh (e+f x)}}{9 f^3}-\frac{64 a \cosh ^2\left (\frac{e}{2}+\frac{f x}{2}+\frac{i \pi }{4}\right ) \sqrt{a+i a \sinh (e+f x)}}{27 f^4}+\frac{32 a x \sinh \left (\frac{e}{2}+\frac{f x}{2}+\frac{i \pi }{4}\right ) \cosh \left (\frac{e}{2}+\frac{f x}{2}+\frac{i \pi }{4}\right ) \sqrt{a+i a \sinh (e+f x)}}{9 f^3}+\frac{8 a x^3 \tanh \left (\frac{e}{2}+\frac{f x}{2}+\frac{i \pi }{4}\right ) \sqrt{a+i a \sinh (e+f x)}}{3 f}+\frac{4 a x^3 \sinh \left (\frac{e}{2}+\frac{f x}{2}+\frac{i \pi }{4}\right ) \cosh \left (\frac{e}{2}+\frac{f x}{2}+\frac{i \pi }{4}\right ) \sqrt{a+i a \sinh (e+f x)}}{3 f} \]

Antiderivative was successfully verified.

[In]

Int[x^3*(a + I*a*Sinh[e + f*x])^(3/2),x]

[Out]

(-1280*a*Sqrt[a + I*a*Sinh[e + f*x]])/(9*f^4) - (16*a*x^2*Sqrt[a + I*a*Sinh[e + f*x]])/f^2 - (64*a*Cosh[e/2 +
(I/4)*Pi + (f*x)/2]^2*Sqrt[a + I*a*Sinh[e + f*x]])/(27*f^4) - (8*a*x^2*Cosh[e/2 + (I/4)*Pi + (f*x)/2]^2*Sqrt[a
 + I*a*Sinh[e + f*x]])/(3*f^2) + (32*a*x*Cosh[e/2 + (I/4)*Pi + (f*x)/2]*Sinh[e/2 + (I/4)*Pi + (f*x)/2]*Sqrt[a
+ I*a*Sinh[e + f*x]])/(9*f^3) + (4*a*x^3*Cosh[e/2 + (I/4)*Pi + (f*x)/2]*Sinh[e/2 + (I/4)*Pi + (f*x)/2]*Sqrt[a
+ I*a*Sinh[e + f*x]])/(3*f) + (640*a*x*Sqrt[a + I*a*Sinh[e + f*x]]*Tanh[e/2 + (I/4)*Pi + (f*x)/2])/(9*f^3) + (
8*a*x^3*Sqrt[a + I*a*Sinh[e + f*x]]*Tanh[e/2 + (I/4)*Pi + (f*x)/2])/(3*f)

Rule 3319

Int[((c_.) + (d_.)*(x_))^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[((2*a)^IntPart[n
]*(a + b*Sin[e + f*x])^FracPart[n])/Sin[e/2 + (a*Pi)/(4*b) + (f*x)/2]^(2*FracPart[n]), Int[(c + d*x)^m*Sin[e/2
 + (a*Pi)/(4*b) + (f*x)/2]^(2*n), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[n
 + 1/2] && (GtQ[n, 0] || IGtQ[m, 0])

Rule 3311

Int[((c_.) + (d_.)*(x_))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(d*m*(c + d*x)^(m - 1)*(
b*Sin[e + f*x])^n)/(f^2*n^2), x] + (Dist[(b^2*(n - 1))/n, Int[(c + d*x)^m*(b*Sin[e + f*x])^(n - 2), x], x] - D
ist[(d^2*m*(m - 1))/(f^2*n^2), Int[(c + d*x)^(m - 2)*(b*Sin[e + f*x])^n, x], x] - Simp[(b*(c + d*x)^m*Cos[e +
f*x]*(b*Sin[e + f*x])^(n - 1))/(f*n), x]) /; FreeQ[{b, c, d, e, f}, x] && GtQ[n, 1] && GtQ[m, 1]

Rule 3296

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> -Simp[((c + d*x)^m*Cos[e + f*x])/f, x] +
Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]

Rule 2638

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3310

Int[((c_.) + (d_.)*(x_))*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(d*(b*Sin[e + f*x])^n)/(f^2*n
^2), x] + (Dist[(b^2*(n - 1))/n, Int[(c + d*x)*(b*Sin[e + f*x])^(n - 2), x], x] - Simp[(b*(c + d*x)*Cos[e + f*
x]*(b*Sin[e + f*x])^(n - 1))/(f*n), x]) /; FreeQ[{b, c, d, e, f}, x] && GtQ[n, 1]

Rubi steps

\begin{align*} \int x^3 (a+i a \sinh (e+f x))^{3/2} \, dx &=-\left (\left (2 a \text{csch}\left (\frac{e}{2}-\frac{i \pi }{4}+\frac{f x}{2}\right ) \sqrt{a+i a \sinh (e+f x)}\right ) \int x^3 \sinh ^3\left (\frac{e}{2}-\frac{i \pi }{4}+\frac{f x}{2}\right ) \, dx\right )\\ &=-\frac{8 a x^2 \cosh ^2\left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \sqrt{a+i a \sinh (e+f x)}}{3 f^2}+\frac{4 a x^3 \cosh \left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \sinh \left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \sqrt{a+i a \sinh (e+f x)}}{3 f}+\frac{1}{3} \left (4 a \text{csch}\left (\frac{e}{2}-\frac{i \pi }{4}+\frac{f x}{2}\right ) \sqrt{a+i a \sinh (e+f x)}\right ) \int x^3 \sinh \left (\frac{e}{2}-\frac{i \pi }{4}+\frac{f x}{2}\right ) \, dx-\frac{\left (16 a \text{csch}\left (\frac{e}{2}-\frac{i \pi }{4}+\frac{f x}{2}\right ) \sqrt{a+i a \sinh (e+f x)}\right ) \int x \sinh ^3\left (\frac{e}{2}-\frac{i \pi }{4}+\frac{f x}{2}\right ) \, dx}{3 f^2}\\ &=-\frac{64 a \cosh ^2\left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \sqrt{a+i a \sinh (e+f x)}}{27 f^4}-\frac{8 a x^2 \cosh ^2\left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \sqrt{a+i a \sinh (e+f x)}}{3 f^2}+\frac{32 a x \cosh \left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \sinh \left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \sqrt{a+i a \sinh (e+f x)}}{9 f^3}+\frac{4 a x^3 \cosh \left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \sinh \left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \sqrt{a+i a \sinh (e+f x)}}{3 f}+\frac{8 a x^3 \sqrt{a+i a \sinh (e+f x)} \tanh \left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right )}{3 f}+\frac{\left (32 a \text{csch}\left (\frac{e}{2}-\frac{i \pi }{4}+\frac{f x}{2}\right ) \sqrt{a+i a \sinh (e+f x)}\right ) \int x \sinh \left (\frac{e}{2}-\frac{i \pi }{4}+\frac{f x}{2}\right ) \, dx}{9 f^2}-\frac{\left (8 a \text{csch}\left (\frac{e}{2}-\frac{i \pi }{4}+\frac{f x}{2}\right ) \sqrt{a+i a \sinh (e+f x)}\right ) \int x^2 \cosh \left (\frac{e}{2}-\frac{i \pi }{4}+\frac{f x}{2}\right ) \, dx}{f}\\ &=-\frac{16 a x^2 \sqrt{a+i a \sinh (e+f x)}}{f^2}-\frac{64 a \cosh ^2\left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \sqrt{a+i a \sinh (e+f x)}}{27 f^4}-\frac{8 a x^2 \cosh ^2\left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \sqrt{a+i a \sinh (e+f x)}}{3 f^2}+\frac{32 a x \cosh \left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \sinh \left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \sqrt{a+i a \sinh (e+f x)}}{9 f^3}+\frac{4 a x^3 \cosh \left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \sinh \left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \sqrt{a+i a \sinh (e+f x)}}{3 f}+\frac{64 a x \sqrt{a+i a \sinh (e+f x)} \tanh \left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right )}{9 f^3}+\frac{8 a x^3 \sqrt{a+i a \sinh (e+f x)} \tanh \left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right )}{3 f}-\frac{\left (64 a \text{csch}\left (\frac{e}{2}-\frac{i \pi }{4}+\frac{f x}{2}\right ) \sqrt{a+i a \sinh (e+f x)}\right ) \int \cosh \left (\frac{e}{2}-\frac{i \pi }{4}+\frac{f x}{2}\right ) \, dx}{9 f^3}-\frac{\left (32 i a \text{csch}\left (\frac{e}{2}-\frac{i \pi }{4}+\frac{f x}{2}\right ) \sqrt{a+i a \sinh (e+f x)}\right ) \int x \cosh \left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \, dx}{f^2}\\ &=-\frac{128 a \sqrt{a+i a \sinh (e+f x)}}{9 f^4}-\frac{16 a x^2 \sqrt{a+i a \sinh (e+f x)}}{f^2}-\frac{64 a \cosh ^2\left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \sqrt{a+i a \sinh (e+f x)}}{27 f^4}-\frac{8 a x^2 \cosh ^2\left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \sqrt{a+i a \sinh (e+f x)}}{3 f^2}+\frac{32 a x \cosh \left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \sinh \left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \sqrt{a+i a \sinh (e+f x)}}{9 f^3}+\frac{4 a x^3 \cosh \left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \sinh \left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \sqrt{a+i a \sinh (e+f x)}}{3 f}+\frac{640 a x \sqrt{a+i a \sinh (e+f x)} \tanh \left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right )}{9 f^3}+\frac{8 a x^3 \sqrt{a+i a \sinh (e+f x)} \tanh \left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right )}{3 f}-\frac{\left (64 a \text{csch}\left (\frac{e}{2}-\frac{i \pi }{4}+\frac{f x}{2}\right ) \sqrt{a+i a \sinh (e+f x)}\right ) \int \cosh \left (\frac{e}{2}-\frac{i \pi }{4}+\frac{f x}{2}\right ) \, dx}{f^3}\\ &=-\frac{1280 a \sqrt{a+i a \sinh (e+f x)}}{9 f^4}-\frac{16 a x^2 \sqrt{a+i a \sinh (e+f x)}}{f^2}-\frac{64 a \cosh ^2\left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \sqrt{a+i a \sinh (e+f x)}}{27 f^4}-\frac{8 a x^2 \cosh ^2\left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \sqrt{a+i a \sinh (e+f x)}}{3 f^2}+\frac{32 a x \cosh \left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \sinh \left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \sqrt{a+i a \sinh (e+f x)}}{9 f^3}+\frac{4 a x^3 \cosh \left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \sinh \left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right ) \sqrt{a+i a \sinh (e+f x)}}{3 f}+\frac{640 a x \sqrt{a+i a \sinh (e+f x)} \tanh \left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right )}{9 f^3}+\frac{8 a x^3 \sqrt{a+i a \sinh (e+f x)} \tanh \left (\frac{e}{2}+\frac{i \pi }{4}+\frac{f x}{2}\right )}{3 f}\\ \end{align*}

Mathematica [A]  time = 1.40348, size = 269, normalized size = 0.71 \[ -\frac{a (\sinh (e+f x)-i) \sqrt{a+i a \sinh (e+f x)} \left (-81 i f^3 x^3 \sinh \left (\frac{1}{2} (e+f x)\right )+9 i f^3 x^3 \sinh \left (\frac{3}{2} (e+f x)\right )-486 f^2 x^2 \sinh \left (\frac{1}{2} (e+f x)\right )-18 f^2 x^2 \sinh \left (\frac{3}{2} (e+f x)\right )+81 \left (f^3 x^3+6 i f^2 x^2+24 f x+48 i\right ) \cosh \left (\frac{1}{2} (e+f x)\right )+\left (9 f^3 x^3-18 i f^2 x^2+24 f x-16 i\right ) \cosh \left (\frac{3}{2} (e+f x)\right )-1944 i f x \sinh \left (\frac{1}{2} (e+f x)\right )+24 i f x \sinh \left (\frac{3}{2} (e+f x)\right )-3888 \sinh \left (\frac{1}{2} (e+f x)\right )-16 \sinh \left (\frac{3}{2} (e+f x)\right )\right )}{27 f^4 \left (\cosh \left (\frac{1}{2} (e+f x)\right )+i \sinh \left (\frac{1}{2} (e+f x)\right )\right )^3} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3*(a + I*a*Sinh[e + f*x])^(3/2),x]

[Out]

-(a*(-I + Sinh[e + f*x])*Sqrt[a + I*a*Sinh[e + f*x]]*(81*(48*I + 24*f*x + (6*I)*f^2*x^2 + f^3*x^3)*Cosh[(e + f
*x)/2] + (-16*I + 24*f*x - (18*I)*f^2*x^2 + 9*f^3*x^3)*Cosh[(3*(e + f*x))/2] - 3888*Sinh[(e + f*x)/2] - (1944*
I)*f*x*Sinh[(e + f*x)/2] - 486*f^2*x^2*Sinh[(e + f*x)/2] - (81*I)*f^3*x^3*Sinh[(e + f*x)/2] - 16*Sinh[(3*(e +
f*x))/2] + (24*I)*f*x*Sinh[(3*(e + f*x))/2] - 18*f^2*x^2*Sinh[(3*(e + f*x))/2] + (9*I)*f^3*x^3*Sinh[(3*(e + f*
x))/2]))/(27*f^4*(Cosh[(e + f*x)/2] + I*Sinh[(e + f*x)/2])^3)

________________________________________________________________________________________

Maple [F]  time = 0.046, size = 0, normalized size = 0. \begin{align*} \int{x}^{3} \left ( a+ia\sinh \left ( fx+e \right ) \right ) ^{{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(a+I*a*sinh(f*x+e))^(3/2),x)

[Out]

int(x^3*(a+I*a*sinh(f*x+e))^(3/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (i \, a \sinh \left (f x + e\right ) + a\right )}^{\frac{3}{2}} x^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+I*a*sinh(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((I*a*sinh(f*x + e) + a)^(3/2)*x^3, x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+I*a*sinh(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(a+I*a*sinh(f*x+e))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (i \, a \sinh \left (f x + e\right ) + a\right )}^{\frac{3}{2}} x^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+I*a*sinh(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate((I*a*sinh(f*x + e) + a)^(3/2)*x^3, x)